If it's not what You are looking for type in the equation solver your own equation and let us solve it.
m^2-18m+72=7
We move all terms to the left:
m^2-18m+72-(7)=0
We add all the numbers together, and all the variables
m^2-18m+65=0
a = 1; b = -18; c = +65;
Δ = b2-4ac
Δ = -182-4·1·65
Δ = 64
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{64}=8$$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-18)-8}{2*1}=\frac{10}{2} =5 $$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-18)+8}{2*1}=\frac{26}{2} =13 $
| 8+4d=-9d-7+2 | | 8k+8=4(3k-7)+2k | | (x-30)=(2x-135) | | -2x-5=4x+13 | | 8+4d=-9d-7 | | -8j+14=-8j-7 | | -4(9+2)+8=2(p-1)-7p+15 | | n–3=–15 | | 22+8x=5x-24 | | x+130+90=180 | | h+3.2=4.6 | | 6+5j=4j | | 2w+50=64 | | 36 = g6 + 34 | | 5a+7-a-1=10 | | 24/6=32/x | | 10-3k=-5k-10 | | 5.x+10=60 | | x+133+50=180 | | 6s+s+s-5s=6 | | 5=8p-5-7p | | 20+4g=100 | | 32/28=m/14 | | -4g=-7-3g | | 17k+6k+11=8 | | 3(x+9)^2= 12 | | 3a-6a=2=8a+20-5a | | 7x-7+5x=-3(x-3) | | 8(4x-2)=32x-32 | | 20+17u=–20+15u | | –6h+8=–8h−1−h | | 5−2x=3x+30 |